
hlternational Journal of Thermophysics, Vol. 16, No. 5, 1995 

Correlation and Extrapolation Scheme for the 
Composition and Temperature Dependence 
of Viscosity of Binary Gaseous Mixtures: 
Carbon Dioxide + Ethane 1 

S. Hendl 2 and E. Vogel  2" 3 

Experimental viscosity data of ethane, carbon dioxide, and three mole fractions 
of the binary system carbon dioxide + ethane in the temperature range 
293.15~<T~<633.15K and in the density range 0.01~<p~<0.05mol.L -~ 
reported earlier were evaluated simultaneously to find out a useful correlation 
and extrapolation scheme for the viscosity of binary systems in the range of 
moderate densities. A procedure based on the ideas of the modified Enskog 
theory has been found to give the best results. Dependent on temperature, the 
collision diameters related to the equilibrium radial distribution function at 
contact are fitted to viscosity values of the pure substances and of at least one 
mixture. The results are compared with experimental data from the literature. 
A recommendation is given concerning the density range in which the rtrst 
density contribution to the viscosity coefficient of the system carbon dioxide + 
ethane is sufficient to be included. 

KEY WORDS: binary gaseous mixture; carbon dioxide; ethane; transport 
properties; viscosity. 

1. I N T R O D U C T I O N  

In a recently published paper [ 1 ], experimental results for the viscosity of 
the binary system carbon dioxide + ethane have been reported at three 
mole fractions Xco 2 = 0.7398, 0.50000, and 0.2500, respectively. These data 
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were evaluated together with new experimental data for ethane [2] and 
carbon dioxide [ 3 ]. 

All these measurements were carried out in an all-quartz oscillating- 
disk viscometer which has been described in detail in Refs. 4-6. The visco- 
meter was calibrated for large ranges of the boundary layer thickness at 
room temperature by means of reference values of the viscosity coefficient 
of argon, krypton as well as nitrogen. After three or four series of measure- 
ments the calibration of the viscometer was checked by an additional 
measurement on argon or nitrogen. The uncertainty of the experimental 
data has been estimated to be +0.15 % near room temperature, increasing 
up to +0 .3% at 633.15 K, whereas the reproducibility is even better 
( _ 0.1%) covering the whole temperature range. 

The viscosity of pure substances as well as of mixtures can be 
represented by density expansions, 

r~i = l']~ O) "-I- Illi I ) p -t- /1121/0 2 q -  " ' '  (1) 

..(0) q_~( l )~  ~(2) ^ 2 .  
/ ' ] m i x  = q r n i x  - -  t / m i x / J  "]- q r n i x P  "r" " ' "  (2) 

The kinetic theory of dilute gases [ 7, 8 ] gives the theoretical background 
for the zero-density viscosity coefficients n r~ and no~ Whereas in the case ~ i  "# m i x "  

of a pure substance the Rainwater-Friend theory [9-11 ] can be used to 
describe the initial density dependence of the viscosity ql IJ at a relatively 
high level, this theory has not been extended to mixtures. Thus, the cal- 
culation and prediction of the viscosity of gaseous mixtures have to be 
restricted to the extensions of the Enskog theory to binary mixtures 
by Thorne [ 12] and to multicomponent mixtures by Tham and Gubbins 
[ 13]. Lopez de Haro et al. [ 14] examined in detail the differences between 
the standard Enskog theory (SET) due to Tham and Gubbins and the 
revised Enskog theory (RET) due to van Beijeren and Ernst [15]. They 
found that there are no differences in the case of the viscosity of multi- 
component mixtures following from the SET and RET. The extensions of 
the Enskog theory for multicomponent mixtures represent practical tools 
for the treatment of the composition and density dependence of the 
viscosity of a real dense gaseous mixture. In accordance with the ideas of 
the modified Enskog theory for pure substances, the hard-sphere quantities 
are replaced by suitably chosen real dense-gas quantities. Kestin et al. [ 16] 
developed a method on this basis for calculating the viscosity of dense gas 
mixtures in large density ranges using a pseudo-radial distribution function 
at contact of the colliding spheres. 

The present paper reports a new scheme for the calculation and 
prediction of the viscosity of binary mixtures according to the modified 
Enskog theory in the range of the first density contribution. An extrapolation 
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to higher densities allows conclusions concerning the density range in 
which the first density correction gives reasonably good results. 

2. T H E O R Y  

Since the theory of the density dependence of the viscosity for a binary 
gaseous mixture has recently been discussed [I ,  17-19], here only the 
essential features are outlined. 

In the case of a pure gas consisting of hard spheres, the coefficient r/~ ~ 
of Eq. (1) is given in the first approximation of the Chapman-Enskog 
solution of the Boltzmann equation by 

5 (TtrnikT) '/2- r/(O) 
i 16 rca~ (3) 

where m; is the molecular mass, T the temperature, k Boltzmann's 
constant, and a; the diameter of a hard sphere. Then the first density 
correction ..( J ) is qi 

i ~ q i  ~ q i  ~z'~tli (4) 

with 

2 3 (5) b i : ' ~  ~NAvC7 i 

X;= 1 +Zl l~p+ 1+  b~ . . . .  p +  .. .  (6) 
Ci 

5 3 .(1) -~  TZNAvai (7) Xi = 

b; and c; are the second and third pressure virial coefficients for hard 
spheres. NAy is Avogadro's constant, B~, the second viscosity virial coef- 
ficient, and Z; the equilibrium radial distribution function at contact of 
hard spheres. 

The zero-density and the linear-in-density contributions in the formula 
for the viscosity of a binary gas mixture are evaluated from 

r r/mix = -- H21 H22 Hzt H22 + xmi.~ (8) 
Y I .1'2 
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with the H v, y~, and Xo" given by the density series 

H v = H ~ ' + H ~ p +  . . .  (9) 

y i = x i +  y~t)p+ .. .  (10) 

Xo= l + X~.)p + . . .  (11) 

In the case of a mixture of hard spheres the first two terms in Eq. (2) are 
identified with 

q < o )  r,-2 r 4 m ) .  ,.2 r_r~o) ~rmll r r4~o~o)  H~O)2] -1 
m i x - -  L ~ I ' "  2 2 - -  " ~ 2 " "  I t  - -  2xt.~2..'t" 12 J L ' "  t l  " ' 2 2  - -  (12) 

, ,0)  T4(O) q~?x ---- I_~ I ' * F  ,-2 T-/t221)-F X~ n'lll 1 -  2X, x2H]~) + 2x, )., . .  "-2 + 2x2 yCz' )HI ~ 

").. .  ~ , ( 1 ) M ' ( O )  " ) ~  , , ( l ) l t / ( o )  . ( 0 )  t I . . / - (O)  L / ' ( I ) . . t _ L / - ( I ) L g ( O )  9 L / ' I O )  L / ' ( I ) / " I  
- - ~ ' ~ ' 1 ) ' 2  ~ "  12 - - ' ~ - ' ~ 2 . . v  1 at~t 12 - - q m i x  ~-'~a I1 a a  2 2  ~ a  11 a a  22  - - ~ J ~  12 ~a  12 1 1  

rr4~o) t4~o) r4~o):1 -~ (13) 
X L * ' I I  " "  22 - - a . z  12 J 

The leading term of the bulk viscosity Kmi x is quadratic in density. Here 

x 2 2 2xixj  mimj { 5 mf~ H(O)_ , + ~ _ _  
ii --q~o)--y=~.#i q~o) ( m i + m y ) 2 ~ + m i i )  (14) 

2 (1 )  2 2XiX.V(I) mimj /" 5 mf'x ( 1 )  XiXii  .IAO" 
" , , -  . :o ,  + Z (15) 

. . ( 0 )  (m i + my)2 ~l j : l , j # i  qij 

H~9~( jr  ) = 2x~xj m~rnj - 1 (16) 
n~.9 ~ (m~ + mj)  2 ~q 

H~!)( j  # i) = ) n (~ (mi+m.i) 2 \3A,~-- 1 (17) 

q(?) 5 (~zmokT)W2 
u 16 ha .  z. (18) 

g 

2mira1 (19) 
miJ = (mi + my)2 

1 
a,7 = ~ (al + aj) (20) 

3aiiaO n 2 ~t- (21) 

4 2 
y l . t )=~ x,  ~ m.i xjbv ' bo.= 2 3 (22) 

j= l  mi+my  3 nNAvai: 
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The interaction viscosity 'to-t~ is that of a hypothetical one-component hard- 
sphere fluid with the mass m,j and the diameter au in the limit of zero 
density. A* represents a dimensionless ratio of collision integrals and is 
exactly unity for hard spheres. It should be noted that in the case of a gas 
of hard spheres only a single diameter a,j is necessary for the description of 
bo., X~, and r/~9~. 

In the adaptation of the Enskog theory of hard spheres to real 
molecules, it is assumed that the transport coefficients have the same 
functional form as in the case of a hard-sphere gas. Thus, the hard-sphere 
quantities can be replaced by real-gas quantities. This requires us to 
distinguish among three real-gas diameters a 7 for .,-t~162 , a~b for b~, and a~z 
for ,,~y~). The quantity a~q is commonly replaced by experimental values 
for the zero-density viscosity coefficient _~o) Furthermore, the pressure P qi " 
in the equation of state of a gas of hard spheres is replaced by the thermal 
pressure T(OP/OT)p of the real gas. On this condition it follows 
immediately [ 20] that 

b i = B i  + T dBi (23) 

dCi 
ci = Ci+ T d---T (24) 

where Bi and C; are the second and third pressure virial coefficients of the 
real gas. According to this theory a~ and af  can be determined directly 
from B(T) and C(T) data by means of 

I, [" 3 bi'~ I/3 (25) O" i ~ - -  
~2~NAv ) 

az _ \5rtNhv (" 12 cibi) I/s i - _-- (26) 

For binary gaseous mixtures, the hard-sphere quantities have also to be 
identified as real-gas quantities. Then a} is replaced by experimentally 
obtained values for the interaction viscosity in the limit of zero density _co) "tU ' 

whereas a~. is calculated from interaction pressure virial coefficients B,~ (T). 
Unfortunately, a } cannot be obtained by means of second and third 
pressure virial coefficients because four different C;jk(T) values would have 
to be reduced to three a~. and ,~0 yt~) values, respectively. But, it is possible 
either to fit only the a, x. to the experimental data and to calculate the a,} 
according to the mixing rule, expressed by Eq. (20), or to fit the a~. and the 
a x. simultaneously to the experimental data. 
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3. EVALUATION 

To deduce a useful and practicable correlation and prediction scheme 
the following three methods were investigated. 

1. The composition dependence of the first density correction of the 
equilibrium radial distribution function at contact X~ I is neglected. 

2. The viscosity of the mixture is predicted only from the pure-gas 
quantities a~ including the mixing rule, Eq. (20). 

3. The a~ are determined by simultaneously fitting to the experimental 
data of the pure substances and of only one mixture. In this connection a,~ 
is implicitly fitted using the mixing rule, Eq. (20). 

It should be stressed that in all cases the zero-density viscosity of the pure 
substances r/~ ~ as well as the interaction viscosity of the binary mixture 
r/~.. ~ have to be known in order to replace a7 and tT~. and that the diameters 
a~ as well as ~ .  are calculated from B(T) data via Eqs. (23) and (25). The 
temperature functions bi and b u for ethane, carbon dioxide, and the binary 
system are illustrated in Fig. I. The increasing values of t~ at temperatures 
higher than 500 K (see Table I) are related to the peculiar behavior of the 
bi curve of ethane that is caused by the experimental B(T) values at higher 
temperatures. 

As already discussed in Ref. 1 the neglect of the composition depen- 
dence of the first density correction of the equilibrium radial distribution 

.c~) [see Eq. (21)] resulted in relatively large positive function at contact x0 

0.25 

- 0.20 

0.15 
- 3  

O.lO 

0.05 

0.00 

I I 

300 400 500 600 

T,K 
Fig. 1. Temperature dependence of b,j calculated from B(T) 
data according to the modified Enskog theory. (--) Ethane; 
( ... ) carbon dioxide; ( . . . . .  ) carbon dioxide + ethane. 
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Table I. Diameters tr~ and a~ According to the Modified Enskog Theory and Diameters tri x 
and tr z Fitted to Experimental Viscosity Data 

Temperature Collision diameter (nm)~ 
T 

b b 

298.15 0.5418 0.5020 0 . 4 7 4 2  0 . 5 3 3 0  0.4942 0.5136 
293.15 0.5452 0.5075 0.4763 0.5381 0.5035 0.5208 
323.15 0.5242 0.4783 0.4650 0 . 5 0 5 0  0.4636 0.4843 
353.15 0.5034 0.4567 0.4563 0.4682 0.4360 0.4521 
383.15 0.4848 0.4402 0.4494 0.4287 0.4178 0.4233 
423.15 0.4658 0.4233 0 . 4 4 2 0  0 . 3 8 9 6  0 . 3 9 7 7  0.3936 
453.15 0.4565 0.4133 0.4375 0.3671 0.3851 0.3761 
483.15 0.4514 0.4048 0.4337 0.3598 0.3720 0.3659 
513.15 0.4498 0.3974 0.4303 0.3592 0.3590 0.3591 
543.15 0.4511 0.3910 0 . 4 2 7 4  0.3684 0.3463 0.3573 
573.15 0.4546 0.3853 0.4248 0.3843 0.3319 0.3581 
603.15 0.4596 0.3802 0.4225 0 . 4 0 2 7  0 . 3 1 3 6  0.3582 
633.15 0.4657 0.3756 0.4205 0.4255 0.2866 0.3561 

" i  = ethane, j = carbon dioxide. 
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Fig. 2. Deviations of calculated viscosity data from experimental /~mix 
data according to the second method. Filled symbols: (O) ethane, 
( � 9  carbon dioxide, ( � 9  Xco :=0.2500, ( � 9  Xco :=0.5000, and 
(&) Xco:=0.7398, all at 0,01 mol. L -s. Open symbols: same as filled 
symbols, all at 0.05 mol- L -  t. ,d~.L, = 100(q~x, ~xp -- r/mix, ~lc)/r/mix, ~.~lc. 
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values for X~: ~ and in physically unreasonably negative values for X~! ~ (see 
Fig. 4 in Ref. 1 ). 

The prediction of the viscosity of the three binary mixtures from only 
pure-substance quantities according to the second method requires the 
calculation of th~ diameters a, z. by means of Eqs. (4)-(7) with 

/ 5~NAv 0,-.--~)/ (27) 
qi I J  

where b~ is calculated via Eq. (23). The quantity a,~. is obtained according 
to the mixing rule, Eq. (20). This procedure leads to smalt deviations of the 
calculated values from the experimental r/mix data in the case of a very low 
density (0.01 m o l - L  - I )  and to relatively higher deviations at a density of 
0 .05mol-L - l ,  as shown in Fig. 2. It is noted that the deviations are 
systematically positive, with two maxima at both temperature extrema, 
and that the small deviations of the mixture with the mole fraction 
Xco, = 0.7398 are coincidental. 

The best results were obtained by the third method, in which a, z. are 
fitted to the experimental data of the pure substances and to only one 
mixture, while the mixing rule Eq. (20) is used for a,~. The mixture with the 
mole fraction Xco_, = 0.5000 was chosen to be included. A fit of all three 
diameters (a~, try, a,~) to the experimental viscosity data of the two pure 
substances and of the three mixtures failed numerically because of the small 
influence of tr z. Values of a~ and a~. according to the modified Enskog 
theory and a, x. and tr,~. fitted to the experimental data in the described man- 
ner are presented at selected temperatures in Table I. The deviatons of the 
calculated values from the experimental viscosities of the pure substances 
and of the three mixtures are shown in Fig. 3. The first density correction 
of the equilibrium radial distribution function at contact g~ ), resulting 
from the fitted a~ and a t. via Eq. (21), are compared with the results of the 
first method in Fig. 4. It turns out that the composition dependence o fx~  ) 
is small but not negligible. When we calculate the total value of the radial 
distribution function at contact Xg in the density range under consideration 
and extrapolate to zero density, the Xu values for all isotherms are 
0.99999 <~Xo <~ 1.00001. This shows that the scheme works well. 

Finally, by means of the results of the third method, extrapolated 
viscosity values were calculated for densities up to 16 mol.  L -1 at 320 and 
500 K and compared with experimental data of Diller and Ely [21]. It 
emerges from Fig. 5 that an extrapolation up to 1 tool. L-1 leads to devia- 
tions within -t-3 %. For the system under discussion, it is recommended to 
include the next term of Eq. (2), quadratic in density, to extrapolate to 
densities higher than 0.6 mol.  L - L  
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Fig. 3. Deviations or calculated viscosity data ~om experimental ~mix 
data according to the third method. Filled symbols: ( 0 )  ethane, 
( � 9  carbon dioxide, ( � 9  Xco ~=0.2500, ( e )  Xco~=0.5000, and 
(&)  Xco~=0.7398, all at 0.01 m o I - L - L  Open symbols: same as filled 
symbols, all at 0.05 mol.  L -  ~. J~m,, = 100(qmix. exp - qmix. ~c)/~mU. c,U~- 
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Fig. 5. Deviations of experimental viscosity data at 320 and 500 K of Diller and Ely [21]  
from the extrapolated values of  the present paper for the system carbon dioxide + ethane. 
Open symbols: ( ~7 ) Xco: = 0.25166, ( O ) Xco_, = 0.49245, and ( A ) Xco: = 0.73978, all at 320 K. 
Filled symbols: same as open symbols, all at 500 K. (,---,) Density range of experimental data 

used in the correlation. ZJ,tm~ ' = 100(r/mix" Diller - -  ~mix, calc)/~mix. Dillcr" 

4. CONCLUSIONS 

A new correlation and extrapolation scheme for simultaneously evaluating 
viscosity data of binary mixtures and pure substances in the limit of the first 
density correction has been developed. Three methods were tested. 

In these schemes experimentally based values for the viscosity of the 
two pure substances and for the interaction viscosity, both in the limit of 
zero density, as well as experimental data for the second pressure virial 
coefficients" of the pure substances and for the interaction second pressure 
virial coefficient are used to replace the hard-sphere diameters related to 
the viscosity and the second pressure virial coefficient. The schemes differ 
with regard to the treatment of the hard-sphere diameters pertaining to the 
first density correction of the equilibrium radial distribution function at 
contact. 



Viscosity of Binary Gaseous Mixtures 1255 

F o r  the  sys tem u n d e r  d iscuss ion ,  c a r b o n  d iox ide  + e thane ,  a p roce -  

du re  wi th  a fit o f  the  d i a m e t e r s  a~ to the e x p e r i m e n t a l  d a t a  o f  the  p u r e  

subs tances  and  o f  at  least  one  m i x t u r e  at  m o d e r a t e  densi t ies ,  wi th  the 

m i x i n g  rule, Eq.  (20), for h a r d - s p h e r e  d i ame te r s ,  leads  to the  best  results.  
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